Guest Blog: Mat Oxley - How MotoGP anti-wheelie works

MotoMatters.com is delighted to feature the work of iconic MotoGP writer Mat Oxley. Oxley is a former racer, TT winner and highly respected author of biographies of world champions Mick Doohan and Valentino Rossi, and currently writes for Motor Sport Magazine, where he is MotoGP correspondent. We are featuring sections from Oxley's blogs, which are posted in full on the Motor Sport Magazine website.


How MotoGP anti-wheelie works

The second of our in-depth look at MotoGP rider aids explains how anti-wheelie works – a handy gadget when you’ve got 260 horsepower on tap

Why were winglets such a big deal during the 2016 MotoGP season? Because the anti-wheelie program in Dorna’s unified software is the weakest of all the rider aids, so the downforce created by the wings helped keep down the front wheel during acceleration.

MotoGP bikes have so much torque (engineers mostly speak of torque, rather than horsepower) that they can lift the front wheel in any gear. And if the wheel lifts too far or too fast the rider must close the throttle, which obviously hurts acceleration. In the pre-2016 days of tailor-made factory electronics the anti-wheelie (AW for short) was very high-tech – the program didn’t even wait for the front wheel to lift before going into anti-wheelie mode. Sensors measured factors like acceleration of the front-suspension stroke to predict a wheelie, which told the ECU to close one or more of the throttle bodies. When the anti-wheelie was set up correctly it reduced torque just enough to avoid a big wheelie, without compromising acceleration too much.

Dorna wanted to get away from that. The concept of their unified software is safety, not performance. Traction control is a major safety issue but wheelies aren’t so much. That’s why Dorna’s AW is quite basic, with no wheelie prediction capability. Riders now rely much more on throttle control to find the best balance between too much wheelie and too little acceleration.

Read the rest of Mat Oxley's blog on the Motor Sport Magazine website.

Source: 
Total votes: 13
Total votes: 6